

    
      
          
            
  
Download Counter


	Version

	0.9.0






Contents



	Getting Started

	Customisation

	API

	Web Page Template






Download Counter

A standalone Python app to keep a tally of downloads from a website.

This app was developed for use with WordPress / NGINX / Ubuntu, but will
probably work on other platforms with minimal alterations. Patches to support
other common platforms are welcome.




Rationale

While there are several WordPress modules for managing downloads, in 2022
it seems that they are all large, complex modules aimed at e-commerce.
From a security perspective, it is advantageous to avoid presenting a larger
attack target than absolutely necessary, hence this small download counter
utility.



What it does:

This app scans the server access logs and searches for downloaded files that
match the given search criteria. When found, they are logged in an SQLite
database, along with the download timestamp and a count of how many times
the file has been downloaded.

Finally, the app generates an HTML page to display the database contents.



How it Works

Nginx logs all access traffic in its ‘access.log’. On a daily schedule
the logs are rotated by default (Ubuntu / Nginx):



	access.log -> access.log.1


	access.log.1 -> access.log.2.gz


	…


	access.log.13.gz -> access.log.14.gz


	access.log.14.gz -> deleted.







Each file downloaded from a website on the server has a log entry in the
form:

Remote-IP - - [local-time-date] "GET /path/to/file.ext protocol"/
status-code bytes_sent "http-referer" "http-user-agent"





As (by default) the ‘access.log’ file only contains logs for the current
day, this app should be run once per day (by a root cron job), immediately
before log rotation. See the section “Log Rotation” for
how to do this. (Alternatively, both ‘access.log’ and ‘access.log.1’
could be analyzed at any time of day, though this is much less efficient.)

From the log we need to find:



	lines containing the file search string


	with status code 200


	after the last time it was counted







The results are stored in an SQLite database, and written to an HTML file.





            

          

      

      

    

  

    
      
          
            
  
Getting Started


Installation


Before you start

To avoid problems, read this page in full before running the app on a live
server.


Dependencies

Download Counter requires Python3. Tested with Python 3.8.10 - slightly
earlier versions may work, but are untested.



Permissions

dlcounter.py may either be run by passing the command to python:

$ python3 dlcounter.py <args>





or by making dlcounter.py executable, then run by entering the command
path/name and (optional) argments:

$ sudo chmod +x dlcounter.py
$ dlcounter.py <args>





Reading server access logs requires root / admin access. Run dlcounter.py as
root / admin. For example, to initialise the database on Linux:

$ sudo ./dlcounter.py -i /var/log/nginx/access.log -v








Installing

To use Download Counter, place dlcounter.py, dlcounter_html.py and
dlcounter.cfg into a suitable directory outside of your website. For
example, they could be placed in a folder in your home directory:

$ mkdir ~/download_counter
$ mv dlcounter.py ~/download_counter
$ mv dlcounter_html.py ~/download_counter
$ mv dlcounter.cfg ~/download_counter
$ sudo chmod +x ~/download_counter/dlcounter.py





Alternatively, if Download Counter is obtained as an archive file, simply
extract the entire package to a convenient location outside of you
website. Remember to set file execute permission for dlcounter.py
if required.


Files



	dlcounter.py is the main app.


	dlcounter.cfg contains the configuration settings.
(This file must be customised before use.)


	dlcounter_html.py provides an HTML template for html output.


	downloads.db (created when Download Counter is
initialised) is the database that stores the data.











Configuration


Configuration file

The app has a configuration file “dlcounter.cfg” that may be
edited with any plain text editor. For example, to edit with nano [https://www.nano-editor.org/dist/latest/nano.html] :

$ cd ~/download_counter
$ nano dlcounter.cfg






Sections



	
	[ACCESSLOGS]
	One or more server logs to analyse.







	
	[FILEPATH]
	The first part of the name of file(s) to be counted from the access log.







	
	[FILENAMES]
	The final part of the name of file(s) to be counted from the access log.
Typically this will be one or more file extensions.







	
	[WEBPAGE]
	The HTML file to display download totals.
Typically this will be within the website html directory.







	
	[DATETIME]
	Datetime formats for reading access logs and writing HTML.


	
	datetime_read
	Format for reading access logs.







	
	datetime_write
	Format for writing html webpage.




















Further details can be found in the Customisation section.




Command Line

The following command line switches are provided:



-d, --docs


Show built-in documentation and exit.






-h, --help


Show short help and exit.






-i, --init’path/to/access.logs’*


Initialise database. (See: “Initialising”).






-v, --verbose


Verbose output.

Prints arguments, options, and the database contents to stdout.

Along with -D (--debug) this can be useful to check the

configuration and for debugging.






-D, --debug


Prints debug information to stdout.

Along with -v (--verbose) this can be useful to check the

configuration and for debugging.






-V, --version


Show version and exit.










Initialising

Download Counter is initialised by running dlcounter.py as root/admin
with the -i (--init) switch, and the path to to the access logs. It is a
good idea to run this manually from the command line with the -i (--init),
-D (--debug), and -v (--verbose) options. Note that the path must include
the base filename.

All access logs in ‘path/to/access.logs’, (including .gz files),
are read. Matching download files are counted regardless of when they were
downloaded. This option overrides [ACCESSLOGS] in dlcounter.cfg and
should only be used on first run. If the database already exists, the downloads
table will be deleted and recreated.


Example

python dlcounter.py -i '/var/log/nginx/access.log'





This example will read all logs:



	/var/log/nginx/access.log


	/var/log/nginx/access.log.1


	/var/log/nginx/access.log.2.gz


	/var/log/nginx/access.log.3.gz


	…







It does not attempt to read other logs such as error.log.




Running the App

After initialising the database, and setting up
the configuration options, dlcounter.py may be run at
any time to update the database and html output. To ensure that all downloads
are caught, dlcounter.py should be run immediately prior to log rotation.
(Alternatively, logs from the current and previous day could be analysed.)


Tip:

Run the program with the -v (--verbose) and -D (--debug) switches,
and redirect output to a text file to check that it is running as expected.




Log Rotation

By default, Ubuntu uses logrotate to rotate logs once per day. Ideally,
download counter should be run immediately before the logs are rotated so
that all records for the previous 24 hours are analyzed.


How it works

This example describes the default setup for Ubuntu / Nginx.

The the script /etc/cron.daily/logrotate runs daily and executes

/usr/sbin/logrotate /etc/logrotate.conf





The logrotate.conf file contains the global default settings for logrotate
and includes additional configuration files in /etc/logrotate.d.

Among the files in /etc/logrotate.d is the logrotate configuration for
nginx:

/var/log/nginx/*.log {
   daily
   missingok
   rotate 14
   compress
   delaycompress
   notifempty
   create 0640 www-data adm
   sharedscripts
   prerotate
      if [ -d /etc/logrotate.d/httpd-prerotate ]; then \
         run-parts /etc/logrotate.d/httpd-prerotate; \
      fi \
   endscript
   postrotate
      invoke-rc.d nginx rotate >/dev/null 2>&1
   endscript
}





The line compress specifies that the log files are compressed, but
delaycompress delays the compression of the most recent log until the
next rotation cycle.

The section between prerotate and endscript checks for the existence of
the directory /etc/logrotate.d/httpd-prerotate. If it exists, then
executable scripts within that directory are run before the logs are rotated.
Thus a script can be scheduled to run immediately before rotation by placing
it in the folder /etc/logrotate.d/httpd-prerotate.


Note

By default, run-parts requires that script names must consist entirely of
ASCII upper- and lower-case letters, ASCII digits, ASCII underscores, and
ASCII minus-hyphens. In particular, dots are not allowed, so file
extensions must not be used.





Example

If /etc/logrotate.d/httpd-prerotate does not exist, create it:

$ sudo mkdir /etc/logrotate.d/httpd-prerotate





Create a bash script to run dlcounter.py. Initially we will run with
verbose (-v) and debug (-D) options, and redirect the output to a file to
check that it is running as expected

$ sudo nano /etc/logrotate.d/httpd-prerotate/dlcounter







Example script:

#!/bin/bash

output="/home/<username>/dlcount.txt"

date +"%Y-%m-%d %H:%M:%S.%N %z" > $output
echo -e "-----------------\n" >> $output
/home/<username>/dlcounter/dlcounter.py -v -D >> $output





And make the script executable:

sudo chmod +x /etc/logrotate.d/httpd-prerotate/dlcounter











            

          

      

      

    

  

    
      
          
            
  
Customisation

Before use, the dlcounter.cfg file must be customised to suit your
server setup. This file must be in the same directory as
dlcounter.py.

Below are descriptions of the sections of the config file, and suggested
settings for common setups based on a WordPress installation running on Nginx
and Ubuntu Linux.


[ACCESSLOGS]

Specify the log file(s) to analyse.

Typically, for a WordPress site on Nginx, this will be:
/var/log/nginx/access.log, which contains data since the last log
rotation. Provided that downloadcounter runs immediately before log rotation it
is sufficient to analyze just this one log file once per day. See the
“Log Rotation” section for more information about how to
use downloadcounter with logrotate.


Example

[ACCESSLOGS]
log1 = /var/log/nginx/access.log





Downloads are only counted if their time stamp is more recent than any
downloads already counted. If it is necessary to analyze aditional (older) log
files, then the files must be listed oldest first. All log files listed here
must be plain text files.



Example

[ACCESSLOGS]
log1 = /var/log/nginx/access.log.1
log2 = /var/log/nginx/access.log








[FILEPATH]

The first part of the search string to identify the downloads in the log files.

This version of Download Counter supports only one FILEPATH parameter.
Typically the downloads to be counted will have a common file path, which
for WordPress sites is in the form:

.../wp-content/uploads/*<year>*/*<month>*/*<filename>*





As “/wp-content/uploads/” is common to all download files, this is used
as the first part of the search string when finding downloaded files.


Example

[FILEPATH]
path = /wp-content/uploads/








[FILENAMES]

The last part of the file(s) to search for in the log files. Typically this
will be a list of file extensions.


Example

[FILENAMES]
file1 = .zip
file2 = .exe








[WEBPAGE]

The location for html output.

Download Counter generates a web page for viewing the download totals.
Typically this will be located within the public html directory of your
website. This must be a fully qualified path. If omitted, no html will
be generated.


Example

[WEBPAGE]
path = /var/www/html/downloads.html








[DATETIME]

Datetime formats for reading access logs and writing the html webpage.
This section has two settings, both of which are required:


datetime_read

Format for reading access logs.


	Default:
	%d/%b/%Y:%H:%M:%S %z

The default matches: “01/Jan/2022:23:35:05 +0000”







datetime_write

Format for writing html webpage.


	Default:
	%a %d %b %H:%M

The default matches: “Mon 01 Jan 18:35”










            

          

      

      

    

  

    
      
          
            
  
API


Download counter

Searches access.log files for successful downloads that match a specified
search string. Matching downloads are tallied in an SQLite database, and
results output to an html file.



Usage

The main functional parameters are set in dlcounter.cfg.
Additional options may be set through command line arguments.


Command line switches


Usage: dlcounter.py [-d] [-h] [-i] [-v] [-D] [-V]




Arguments:


	-d, --docs

	Show this documentation and exit.



	-h, --help

	Show short help and exit.



	-i, --init string

	This option is required if you wish to count downloads in old
archived ‘.gz’ files.

All access logs in path, (including .gz files), are read.
Matching download files are counted regardless of when they were
downloaded, so this option should only be used on first run, (before
the database contains data). This option overrides ACCESSLOGS in
dlcounter.cfg.





Example

The path string should be entered in the form:

$ python3 dlcounter.py -n '/var/log/nginx/access.log'





To read all logs:

* /var/log/nginx/access.log
* /var/log/nginx/access.log.1
* /var/log/nginx/access.log.2.gz
* /var/log/nginx/access.log.3.gz
* ...






	-v, --verbose

	Print commands and database contents to stdout.



	-D, --debug

	Print additional debug strings to stdout.



	-V, --version

	Show program version and exit.







Configuration file

The configuration file (‘dlcounter.cfg’) must be in the same
directory as ‘download_counter.py’.

[ACCESSLOGS] One or more access logs.


Log files must be plain text (not .gz archives).
When more than one access.log files specified, files must be in
reverse chronological order (process oldest first).


	Default:
	log1 = /var/log/nginx/access.log








[FILEPATH] The first part of the download file’s string.


This refers to the string as it appears in the access log.
If not supplied, all file names matching the [FILENAMES]
option(s) will be counted.


	Default:
	path = /wp-content/uploads/





The default option will catch files in any of:



	…/website/downloads/2001/


	…/website/downloads/2002/


	…/website/downloads/…/










[FILENAMES] Download files end of string.


The default options will catch .zip and .exe files that begin with
‘FILEPATH’.


	Default:
	
	file1 = .zip


	file2 = .exe











[WEBPAGE] Fully qualified path for html output.


HTML output is disabled if this path is not specified.


	Default:
	path = /var/www/html/downloads.html








[DATETIME] Datetime formats for reading access logs and writing HTML.


	datetime_read

Format for reading access logs.
The default matches: 01/Jan/2022:23:35:05 +0000


	Default:
	%d/%b/%Y:%H:%M:%S %z







	datetime_write

Format for writing html webpage.
The default matches: Mon 01 Jan 18:35


	Default:
	%a %d %b %H:%M











Note:


[FILEPATH] and [FILENAMES] options are just strings to search for
in the accesslog file(s). Regex is used to search the log file(s) for:
“<path-string> any-characters <file-string>”





	
dlcounter.check_path(name, file)

	Check if file exists.


	Parameters

	
	name (string) – File identifier / file name.


	file (string) – File path.






	Returns

	True or exit.



	Return type

	bool










	
dlcounter.db_path()

	Path to database file.


	Parameters

	None – 



	Returns

	Fully qualified path to SQLite database file.



	Return type

	string










	
dlcounter.first_item_in_section(cfg, section)

	Return the first item from cfg section.


	Parameters

	
	cfg (configparser.ConfigParser) – The ConfigParser object.


	section (string) – Section key.






	Returns

	First value from section, or empty string.



	Return type

	string










	
dlcounter.format_datetime_output(dt_string)

	Format dt_string as required for html output.


	Parameters

	dt_string (datetime) – datetime object.



	Returns

	Reformatted datetime string.



	Return type

	string










	
dlcounter.get_config()

	Return dict of arguments from dlcounter.cfg.

List values are retrieved by list_section().
Single values retrieved by first_item_in_section().
Also print parameters from command line and config file when –verbose
command line argument is passed.


	Parameters

	None – 



	Returns

	Values from configuration file.



	Return type

	dict










	
dlcounter.get_db_time(con)

	Return most recent timestamp from database.


	Parameters

	con (connection) – Connection to the database.



	Returns

	datetime.min if timestamp not found.



	Return type

	datetime










	
dlcounter.get_record(record, pattern)

	Return (filename, time) from line when start
and end of name are found, or None if not found.


	Parameters

	
	record (string) – One line from access log.


	pattern (string) – Regex pattern:
f’GET {re.escape(start)}.*{re.escape(end)}’






	Returns

	(Short filename string, datetime object) if successful,or None.



	Return type

	tuple










	
dlcounter.get_time(record)

	Return timestamp from record.


	Parameters

	record (string) – 



	Returns

	Exit if timestamp not found.



	Return type

	datetime










	
dlcounter.init_db(logpath, opt)

	Initialise database.

Similar to main() but reads all logs that start with ‘logpath’
and does NOT check timestamp before counting. If the database already
exists, the old table will be deleted and a new table created.


	Parameters

	
	logpath (string) – Path to access logs.


	opt (dict) – Parameters from dlcounter.cfg.






	Return type

	None










	
dlcounter.list_section(cfg, section)

	Return list of values from cfg section.


	Parameters

	
	cfg (configparser.ConfigParser) – The ConfigParser object.


	section (string) – Section key.






	Returns

	List of zero or more values.



	Return type

	list










	
dlcounter.log_to_sql(con, file, searchstring, timecheck=None)

	Copy download data from log file to database.

Read one log file and update database.
Updating is handled by update_db().


	Parameters

	
	con (connection) – Connection to the database.


	file (_io.TextIOWrapper) – Pointer to access log.


	searchstring (string) – Regex pattern for filename in log.


	timecheck (datetime) – Initialise if timecheck=None.






	Returns

	True when database has been modified.



	Return type

	bool










	
dlcounter.main(opt)

	Count downloads from access logs.

Search for file names in the access logs that match the search criteria,
and update the database as necessary. The database is created
automatically if it does not exist. Downloads with timestamps older than
the last update are ignored.


	Parameters

	opt (dict) – Contains string values: acclogs, searchstring, and html_out.



	Return type

	None










	
dlcounter.print_table()

	Print contents of database to stdout.

This function is used only with –verbose option.


	Parameters

	None – 



	Return type

	None










	
dlcounter.sql_table(con)

	Create ‘downloads’ table if it doesn’t exist.


	Parameters

	con (connection) – Connection to the database.



	Return type

	None










	
dlcounter.time_format(readf='', writef='')

	Return the date-time format

Values from config for reading access logs and writing html.
Call either time_format.read or time_format.write.


	Parameters

	
	readf (string, default '') – Time format for reading access logs.


	writef (string, default '') – Time format for writing html.









	
dlcounter.read

	
	Type

	string










	
dlcounter.write

	
	Type

	string










	Return type

	None










	
dlcounter.update_db(con, fname, timestamp)

	Update database.

If fname exists in database, update its download total and timestamp,
else insert it into the database with a count of 1.


	Parameters

	
	con (connection) – Connection to the database.


	fname (string) – Name of the downloaded file.


	timestamp (datetime) – Timestamp of download.






	Return type

	None










	
dlcounter.write_html(con, htmlfile)

	Write sql data to web page.


	Parameters

	
	con (connection) – Connection to the database.


	htmlfile (string) – Path to html output file.






	Return type

	None














            

          

      

      

    

  

    
      
          
            
  
Web Page Template

HTML code for generating web page output.

dlcounter.py creates table data between html_top()
and html_bottom(). This module provides the rest of the HTML for the
download counter web page.

This file may be modified according to need.


	
dlcounter_html.html_bottom()

	Return end of html page.


	Returns

	HTML output.



	Return type

	string










	
dlcounter_html.html_top(timestamp)

	Return beginning of html page.


	Returns

	HTML output.



	Return type

	string












            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   d
   


   
     		 	

     		
       d	

     
       	
       	
       dlcounter	
       

     
       	
       	
       dlcounter_html	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | W
 


C


  	
      	check_path() (in module dlcounter)


  





D


  	
      	db_path() (in module dlcounter)


      	
    dlcounter

      
        	module


      


  

  	
      	
    dlcounter_html

      
        	module


      


  





F


  	
      	first_item_in_section() (in module dlcounter)


  

  	
      	format_datetime_output() (in module dlcounter)


  





G


  	
      	get_config() (in module dlcounter)


      	get_db_time() (in module dlcounter)


  

  	
      	get_record() (in module dlcounter)


      	get_time() (in module dlcounter)


  





H


  	
      	html_bottom() (in module dlcounter_html)


  

  	
      	html_top() (in module dlcounter_html)


  





I


  	
      	init_db() (in module dlcounter)


  





L


  	
      	list_section() (in module dlcounter)


  

  	
      	log_to_sql() (in module dlcounter)


  





M


  	
      	main() (in module dlcounter)


      	
    module

      
        	dlcounter


        	dlcounter_html


      


  





P


  	
      	print_table() (in module dlcounter)


  





R


  	
      	read (in module dlcounter)


  





S


  	
      	sql_table() (in module dlcounter)


  





T


  	
      	time_format() (in module dlcounter)


  





U


  	
      	update_db() (in module dlcounter)


  





W


  	
      	write (in module dlcounter)


  

  	
      	write_html() (in module dlcounter)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Download Counter
        


        		
          Getting Started
          
            		
              Installation
              
                		
                  Before you start
                


                		
                  Installing
                


              


            


            		
              Configuration
              
                		
                  Configuration file
                


                		
                  Command Line
                


                		
                  Initialising
                


                		
                  Running the App
                


                		
                  Log Rotation
                


              


            


          


        


        		
          Customisation
          
            		
              [ACCESSLOGS]
              
                		
                  Example
                


                		
                  Example
                


              


            


            		
              [FILEPATH]
              
                		
                  Example
                


              


            


            		
              [FILENAMES]
              
                		
                  Example
                


              


            


            		
              [WEBPAGE]
              
                		
                  Example
                


              


            


            		
              [DATETIME]
              
                		
                  datetime_read
                


                		
                  datetime_write
                


              


            


          


        


        		
          API
          
            		
              Download counter
            


            		
              Usage
              
                		
                  Command line switches
                


                		
                  Configuration file
                


                		
                  Note:
                


              


            


          


        


        		
          Web Page Template
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





_static/counter.png





